Haikal Alfiwansyah_14_XI IPS 2
Pada pembahasan kali ini, kita akan mempelajari penerapan turunan yaiitu dalam kemonotonan, interval fungsi, kecekungan dan uji turunan kedua.
Definisi 1
Misalkan fungsi f terdefinisi pada interval I.
- Fungsi f dikatakan naik (increasing) pada I jika untuk setiap pasangan bilangan x1 dan x2 di I berlaku: jika x1 < x2, maka f(x1) < f(x2).
- fungsi f dikatakan turun (decreasing) pada I jika untuk setiap pasangan bilangan x1 dan x2 di I berlaku: jika x1 < x2, maka f(x1) > f(x2).
- fungsi f dikatakan monoton ketat (strictly monotonic) pada I jika f naik saja atau turun saja pada I.
- Jika f ' (x) > 0 untuk setiap titik dalam x di I, maka f naikpada I.
- Jika f ' (x) < 0 untuk setiap titik dalam x di I, maka f turunpada I.
Tentukanlah interval yang membuat fungsi f(x) = x 3 − 12x + 1 naik atau turun!
Kurva biru: grafik fungsi f.
Kecekungan
Karakteristik suatu fungsi yang naik atau turun dapat kita gunakan untuk mendeskripsikan grafik fungsi tersebut. Selain itu, apabila kita tahu dimana letak selang yang membuat f ’ naik atau turun maka kita dapat menentukan di mana grafik fungsi f akan cekung ke atas atau cekung ke bawah.
Definisi Kecekungan
Misalkan f terdiferensialkan pada selang buka I. Grafik f akan cekung ke atas pada I jika f ’ naik pada selang tersebut dan akan cekung ke bawahpada I jika f ’ turun pada selang tersebut.
Interpretasi grafis kecekungan dari suatu fungsi berikut akan sangat berguna.
- Misalkan f terdiferensialkan pada selang buka I. Jika grafik f cekung ke atas pada I, maka grafik f berada di atas semua garis singgungnya pada selang tersebut. (Lihat gambar (a) di bawah).
- Misalkan f terdiferensialkan pada selang buka I. Jika grafik f cekung ke bawah pada I, maka grafik f berada di bawahsemua garis singgungnya pada selang tersebut. (Lihat gambar (b) di bawah).
Untuk menemukan selang buka di mana suatu grafik fungsi f cekung ke atas atau cekung ke bawah, kita harus menemukan selang di mana f ’ naik atau turun. Sebagai contoh, grafik
akan terbuka ke bawah pada selang buka (–∞, 0) karena
turun pada selang tersebut. Demikian pula, grafik f akan cekung ke atas pada selang (0, ∞) karena f ’ naik pada selang tersebut. Perhatikan gambar di bawah.
Teorema berikutnya menunjukkan bagaimana penggunaan turunan kedua suatu fungsi untuk menentukan selang di mana grafik f tersebut cekung ke atas atau cekung ke bawah. Bukti teorema ini merupakan akibat langsung dari Teorema Uji Fungsi Naik dan Turun, dan definisi kecekungan.
Teorema Uji Kecekungan
Misalkan f adalah suatu fungsi yang turunan keduanya ada pada selang buka I.
- Jika f ”(x) > 0 untuk semua x dalam I, maka grafik f cekung ke atas pada I.
- Jika f ”(x) < 0 untuk semua x dalam I, maka grafik f cekung ke bawah pada I.
Untuk menerapkan Teorema Uji Kecekungan, tentukan lokasi nilai-nilai xsedemikian sehingga f ”(x) = 0 atau f ”tidak ada. Gunakan nilai-nilai x tersebut untuk menentukan selang uji. Kemudian, ujilah tanda f ”(x) pada masing-masing selang uji.
Uji Turunan Kedua
Sebagai tambahan untuk menguji kecekungan, turunan kedua dapat digunakan untuk untuk melakukan pengujian terhadap maksimum dan minimum lokal. Pengujian ini berdasarkan fakta bahwa jika suatu grafik fungsi f cekung ke atas pada selang buka yang memuat c, dan f ’(c) = 0, maka f(c) haruslah minimum lokal f. Demikian juga, jika grafik suatu fungsi f cekung ke bawah pada selang buka yang memuat c, dan f ’(c) = 0, maka f(c) haruslah maksimum lokal f. Perhatikan gambar di bawah ini.
Teorema Uji Turunan Kedua
Misalkan f fungsi kontinu sedemikian sehingga f ’(c) = 0 dan turunan keduanya ada pada selang buka yang memuat c.
- Jika f ”(c) > 0, maka f memiliki minimum lokal pada (c, f(c)).
- Jika f ”(c) < 0, maka f memiliki maksimum lokal pada (c, f(c)).
Jika f ”(c) = 0, maka pengujiannya gagal, atau dengan kata lain, f mungkin memiliki maksimum lokal, minimum lokal, atau tidak memiliki keduannya. Pada kasus ini, kita harus menggunakan Uji Turunan Pertama.
Sekian materi yang saya sampaikan kurang lebihnya mohon maaf sayonaraaa....
Tidak ada komentar:
Posting Komentar