Minggu, 06 Desember 2020

Pertumbuhan, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOALNYA

PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOALNYA


PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOALNYA

  Pengertian Bunga

Bunga adalah selisih antara jumlah nominal uang yang dipinjamkan oleh pemilik modal dengan jumlah yang dikembalikan oleh pemakai modal berdasarkan kesepakatan bersama. Besarnya bunga dipengaruhi oleh besar uang yang dipinjam, jangka waktu peminjaman, dan tingkat suku bunga (persentase). Terdapat dua jenis bunga, yaitu bunga tunggal dan bunga majemuk.

Jenis – Jenis Bunga

Berikut ini adalah jenis – jenis bunga berdasarkan besarnya bunga yang dibayarkan pada setiap periode:

Bunga Tunggal

Bunga tunggal adalah bunga yang dibayar pada setiap periode dengan besaran tetap. Besarnya bunga tunggal dihitung berdasarkan perhitungan modal awal.

Rumus : 

Mn = Modal pada akhir periode
M0 = Modal awal
n = periode
b = presentase

Contoh

Diketahui modal pinjaman Rp1.000.000 dengan bunga sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah ….

M_n = 1.000.000 (1 + 5 \times \frac{2}{100}) = Rp1.100.000

Bunga Majemuk

Bunga majemuk adalah bunga yang diberikan berdasarkan modal awal dan akumulasi bunga pada periode sebelumnya.Bunga majemuk memiliki banyak variasi dan selalu berubah (tidak tetap) pada tiap-tiap periode. Contohnya saat menjual sebuah kendaraan, harga kendaraan yang dijualakan berubah setiap periode dan perubahannya bervariasi.

Rumus =

Contoh

diketahui modal pinjaman Rp1.000.000 dengan bunga majemuk sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah


Bunga Anunitas

Anuitas yang diberikan secara tetap pada setiap akhir periode mempunyai dua fungsi yaitu membayar bunga atas hutang dan mengangsur hutang itu sendiri.
















Contoh

Pada tanggal 1 januari bu rani meminjam uang di koperasi sebesar Rp 2.000.000,00. pinjaman itu akan dilunasi dengan 4 kali angsuran. Suku bunga 12% setahun setiap 3 bulan. Tentukan besar anuitasnya

Diket : 
M = 2.000.000 
i = 12% = 0,12 
n = 4 

Ditanya : A = ? 
Jawab : 
𝐴 = 𝑀. 𝑖 /1 − ( 1 + 𝑖) −𝑛 
𝐴 = 2.000.000 𝑥 0,12/ 1 − ( 1 + 0,12) −4 
𝐴 = 240.000 /1 − ( 1,12) −4 
𝐴 = 240.000 /0,36448 = 658472,344 
Jadi anuitasnya Rp 658.472,34

Pertumbuhan

Pertumbuhan merupakan kenaikan atau pertambahan nilai suatu besaran terhadap besaran sebelumnya yang mengikuti pola aritmatika (linier) atau geometri (eksponensial). Contoh pertumbuhan yaitu perkembangbiakan amoeba dan pertumbuhan penduduk.

Rumus pertumbuhan linear:

P_n = P_0 (1 + n_b)

Rumus pertumbuhan eksponensial:

P_n = P_0 (1 + b)^n

Dimana:
P_n = nilai besaran setelah n periode
P_0 = nilai besaran di awal periode
b = tingkat pertumbuhan
n = banyaknya periode pertumbuhan

Contoh:

Banyaknya bakteri pada satu telapak tangan yang kotor meningkat 2% secara eksponensial setiap satu jam sekali. Saat ini, terdapat bakteri sebanyak 150.000 pada sebuah telapak tangan. Hitunglah banyaknya bakteri setelah satu jam kemudian!

Jawab:

P_0 = 150.000
b = 2% = 0.02
n = 1 jam

Banyaknya bakteri setelah satu jam:

P_n = P_0 (1 + b)^n
P_1 = 150.000 (1 + 0.02)^1
P_1 = 150.000 (1.02)^1
P_1 = 153.000 bakteri

Peluruhan

Peluruhan merupakan penurunan atau pengurangan nilai suatu besaran terhadap nilai besaran sebelumnya yang mengikuti pola aritmatika (linier) atau geometri (eksponensial). Contoh dari peluruhan yaitu peluruhan zat radioaktif dan penurunan harga jual mobil.

Rumus peluruhan linear:

P_n = P_0 (1 - n_b)

Rumus peluruhan eksponensial:

P_n = P_0 (1 - b)^n

Dimana:
P_n = nilai besaran setelah n periode
P_0 = nilai besaran di awal periode
b = tingkat peluruhan
n = banyaknya periode peluruhan

Contoh:

Suatu bahan radioaktif yang semula berukuran 100 gram mengalami reaksi kimia sehingga menyusut sebanyak 5% dari ukuran sebelumnya setiap 6 jam secara eksponensial. Tentukan ukuran bahan radioaktif tersebut setelah 1 hari!

Jawab:

P_0 = 100 gram
b = 5% = 0.05
n = \frac{24}{6} = 4

Ukuran bahan radioaktif setelah 1 hari:

P_n = P_0 (1 - b)^n
P_4 = 100 (1 - 0.05)^4
P_4 = 100 (0.95)^4
P_4 = 100 (0.8145)
P_4 = 81.45

Penyusutan

Penyusutan atau depresiasi adalah pengurangan nilai dari harta tetap terhadap nilai buku atau nilai beli awalnya. Penyusutan dilakukan secara berkala dalam rangka pembebanan biaya pada pendapatan, baik atas penggunaan harta tersebut maupun karena sudah tidak memadai lagi.

Jika harga sebuah barang pada saat dibeli adalah M_0 dan mengalami penyusutan tiap tahunnya sebesar p (dalam persen) dari harga  belinya, maka nilai barang pada akhir tahun ke-n adalah :

M_n = M_0(1 - np)

Tidak ada komentar:

Posting Komentar